

Technical support: <u>order@acebiolab.com</u> Phone: 886-3-2870051

Datasheet

Ver.1 Date : 20180222

Vimentin Antibody Sampler Kit

Cat# AK0283

Upon receipt, store at -20°C. Avoid freeze/thaw cycles.

PRODUCT DESCRIPTION

The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape. In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes. Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two. Vimentin's dynamic structural changes and spatial reorganization in response to extracellular stimuli help to coordinate various signaling pathways. Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin. Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium. During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly. Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy.

Cat No.	Product name	Quantity	Applications	Reactivity	Host
A340700	Vimentin Polyclonal Antibody	20µL	WB, IHC, IF, ELISA	Human	Rabbit
A340357	Phospho-Vimentin (Ser83) Polyclonal	20µL	WB, IHC, ELISA	Human,	Rabbit
	Antibody			Mouse, Rat	
A340358	Phospho-Vimentin (Ser56) Polyclonal	20µL	WB, IHC, ELISA	Human	Rabbit
	Antibody				
A1013s	Goat Anti-Rabbit IgG (H+L)	120µL	WB, ELISA	Rabbit	Goat
	(peroxidase/HRP conjugated)				

PRODUCT INCLUDES

PRODUCT USE LIMITATION

These products are intended for research use only.

