Technical support: order@acebiolab.com

Phone: 886-3-2870051

Ver.1 Date: 20190328

Human IL-6 (Interleukin 6) ELISA Kit

Cat# E0025 - 96T

Storage at 2-8°C for 3 month

INTRODUCTION

This ELISA kit applies to the in vitro quantitative determination of Human IL-6 concentrations in serum, plasma and other biological fluids.

SPECIFICATION

- Sensitivity: 4.69 pg/mL
- Detection Range: 7.81-500 pg/mL
- Specificity: This kit recognizes Human IL-6 in samples. No Significant cross-reactivity or interference between Human IL-6 and analogues was observed.
- Repeatability: Coefficient of variation is < 10%.

PRINCIPLE of KIT

This ELISA kit uses the Sandwich-ELISA principle. The micro ELISA plate provided in this kit has been pre-coated with an antibody specific to Human IL-6. Standards or samples are added to the micro ELISA plate wells and combined with the specific antibody. Then a biotinylated detection antibody specific for Human IL-6 and Avidin-Horseradish Peroxidase (HRP) conjugate are added successively to each micro plate well and incubated. Free components are washed

away. The substrate solution is added to each well. Only those wells that contain Human IL-6, biotinylated detection antibody and Avidin-HRP conjugate will appear blue in color. The enzyme-substrate reaction is terminated by the addition of stop solution and the color turns yellow. The optical density (OD) is measured spectrophotometrically at a wavelength of 450 nm \pm 2 nm. The OD value is proportional to the concentration of Human IL-6. You can calculate the concentration of Human IL-6 in the samples by comparing the OD of the samples to the standard curve.

CONTENTS and STORAGE

An unopened kit can be stored at 2-8°C for 1 month. If the kit is not used within 1 month, store the items separately according to the following conditions once the kit is received.

Components	96T	Storage
Micro ELISA Plate (Dismountable)	8 wells ×12 strips	-20°C, 6 months
Reference Standard	2 vials	
Concentrated Biotinylated Detection Ab (100×)	1 vial, 120 uL	
Concentrated HRP Conjugate (100×)	1 vial, 120 μL	-20°C (shading light), 6 months

Reference Standard & Sample Diluent	1 vial, 20 mL	4°C, 6 months
Biotinylated Detection Ab Diluent	1 vial, 14 mL	
HRP Conjugate Diluent	1 vial, 14 mL	
Concentrated Wash Buffer (25×)	1 vial, 30 mL	
Substrate Reagent	1 vial, 10 mL	4°C (shading light)
Stop Solution	1 vial, 10 mL	4°C
Plate Sealer	5 pieces	
Product Description	1 сору	
Certificate of Analysis	1 сору	

Note: All reagent bottle caps must be tightened to prevent evaporation and microbial pollution. The volume of reagents in partial shipments is a little more than the volume marked on the label, please use accurate measuring equipment instead of directly pouring into the vial(s).

OTHER SUPPLIES REQUIRED

- Microplate reader with 450 nm wavelength filter
- High-precision transfer pipette,
- EP tubes and disposable pipette tips
- Incubator capable of maintaining 37°C
- Deionized or distilled water
- Absorbent paper
- Loading slot for Wash Buffer

NOTE

- 1. Please wear lab coats, eye protection and latex gloves for protection. Please perform the experiment following the national security protocols of biological laboratories, especially when detecting blood samples or other bodily fluids.
- 2. A freshly opened ELISA Plate may appear to have a water-like substance, which is normal and will not have any impact on the experimental results.
- 3. Do not reuse the reconstituted standard, biotinylated detection Ab working solution, concentrated HRP conjugate working solution. The unspent undiluted concentrated biotinylated detection Ab (100×) and other stock solutions should be stored according to the storage conditions in the above table.
- 4. The microplate reader should have a 450 (\pm 10 nm) filter installed and a detector that can detect the wavelength. The optical density should be within 0~3.5.
- 5. Do not mix or use components from other lots.
- 6. Change pipette tips in between adding standards, in between sample additions, and in between reagent additions. Also, use separate reservoirs for each reagent.

SAMPLE COLLECTION

Serum: Allow samples to clot for 2 hours at room temperature or overnight at 2-8°C before centrifugation for 15 min at 1000×g at 2-8°C. Collect the supernatant to carry out the assay. Blood collection tubes should be disposable and be nonendotoxin.

Plasma: Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 min at 1000×g at 2-8°Cwithin 30 min of collection. Collect the supernatant to carry out the assay. Hemolysed samples are not suitable for ELISA assay!

Cell lysates: For adherent cells, gently wash the cells with moderate amount of pre-cooled PBS and dissociate the cells using trypsin. Collect the cell suspension into a centrifuge tube and centrifuge for 5 min at $1000 \times g$. Discard the medium and wash the cells 3 times with pre-cooled PBS. For each 1×10^6 cells, add $150-250~\mu L$ of pre-cooled PBS to keep the cells suspended. Repeat the freeze-thaw process several times until the cells are fully lysed. Centrifuge for $10 \times 1500 \times g$ at $2-8 \, ^{\circ}$ C. Remove the cell fragments, collect the supernatant to carry out the assay. Avoid repeated freeze-thaw cycles.

Tissue homogenates: It is recommended to get detailed references from the literature before analyzing different tissue types. For general information, hemolysed blood may affect the results, so the tissues should be minced into small pieces and rinsed in ice-cold PBS (0.01M, pH=7.4) to remove excess blood thoroughly. Tissue pieces should be weighed and then homogenized in PBS (tissue weight (g): PBS (mL) volume=1:9) with a glass homogenizer on ice. To further break down the cells, you can sonicate the suspension with an ultrasonic cell disrupter or subject it to freeze-thaw cycles. The homogenates are then centrifuged for 5 min at 5000×g to get the supernatant.

Cell culture supernatant or other biological fluids: Centrifuge samples for 20 min at 1000×g at 2-8°C. Collect the supernatant to carry out the assay.

NOTE for SAMPLE:

- 1. Samples should be assayed within 7 days when stored at 2-8°C, otherwise samples must be divided up and stored at -20°C (≤1 month) or -80°C (≤3 months). Avoid repeated freeze-thaw cycles.
- 2. Please predict the concentration before assaying. If the sample concentration is not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.
- 3. If the sample type is not included in the manual, a preliminary experiment is suggested to verify the validity.
- 4. If a lysis buffer is used to prepare tissue homogenates or cell culture supernatant, there is a possibility of causing a deviation due to the introduced chemical substance.
- 5. Some recombinant protein may not be detected due to a mismatching with the coated antibody or detection antibody.

REAGENT PREPARATION

- 1. **Bring all reagents to room temperature (18~25°C) before use.** Follow the Microplate reader manual for set-up and preheat it for 15 min before OD measurement.
- 2. **Wash Buffer:** Dilute 30 mL of Concentrated Wash Buffer with 720 mL of deionized or distilled water to prepare 750 mL of Wash Buffer. Note: if crystals have formed in the concentrate, warm it in a 40°C water bath and mix it gently until the crystals have completely dissolved.
- 3. **Standard working solution:** Centrifuge the standard at 10,000×g for 1 min. Add 1.0 mL of Reference Standard &Sample Diluent, let it stand for 10 min and invert it gently several times. After it dissolves fully, mix it thoroughly with a pipette. This reconstitution produces a working solution of 500 pg/mL. Then make serial dilutions as needed. The recommended dilution gradient is as follows: 500, 250,125, 62.5,31.25,15.63, 7.81, 0 pg/mL. Dilution method: Take 7 EP tubes, add 500 μL of Reference Standard & Sample Diluent to each tube. Pipette 500 μL of the 500 pg/mL working solution to the first tube and mix up to produce a 250 pg/mL working solution. Pipette 500 uL of the solution from the former tube into the latter one according to these steps. The illustration below is for reference. Note: the last tube is regarded as a blank. Don't pipette solution into it from the former tube.
- 4. Biotinylated Detection Ab working solution: Calculate the required amount before the experiment (100 μL/well). In preparation, slightly more than calculated should be prepared. Centrifuge the stock tube before use, dilute the 100x Concentrated Biotinylated Detection Ab to 1xworking solution with Biotinylated Detection Ab Diluent.
- 5. **Concentrated HRP Conjugate working solution:** Calculate the required amount before the experiment (100 μL/well). In preparation, slightly more than calculated should be prepared. Dilute the 100× Concentrated HRP Conjugate to 1× working solution with Concentrated HRP Conjugate Diluent.

ASSAY PROCEDURE

Bring all reagents and samples to room temperature before use. Centrifuge the sample again after thawing before the assay. It is recommended that all samples and standards be assayed in duplicate.

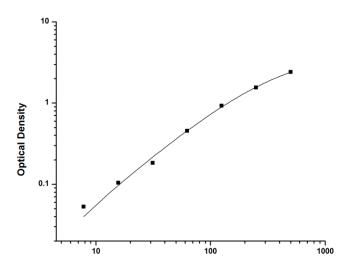
- 1. Add the **Standard working solution** to the first two columns: Each concentration of the solution is added in duplicate, to one well each, side by side (100 μL for each well). Add the samples to the other wells (100 μL for each well). Cover the plate with the sealer provided in the kit. Incubate for 90 min at 37°C. Note: solutions should be added to the bottom of the micro ELISA plate well, avoid touching the inside wall and causing foaming as much as possible.
- 2. Remove the liquid out of each well, do not wash. Immediately add 100 μL of **Biotinylated Detection Ab working** solution to each well. Cover with the Plate sealer. Gently mix up. Incubate for 1 hour at 37°C.
- 3. Aspirate or decant the solution from each well, add 350 μL of wash buffer to each well. Soak for 1~2 min and aspirate or decant the solution from each well and pat it dry against clean absorbent paper. Repeat this wash step 3 times. Note: a microplate washer can be used in this step and other wash steps.
- 4. Add 100 μ L of **HRP Conjugate working solution** to each well. Cover with the Plate sealer. Incubate for 30 min at 37°C.
- 5. Aspirate or decant the solution from each well, repeat the wash process for five times as conducted in step 3.
- 6. Add 90 μL of **Substrate Reagent** to each well. Cover with a new plate sealer. Incubate for about 15 min at 37°C.

- Protect the plate from light. Note: the reaction time can be shortened or extended according to the actual color change, but not more than 30min.
- 7. Add $50 \,\mu\text{L}$ of **Stop Solution** to each well. Note: Adding the stop solution should be done in the same order as the substrate solution.
- 8. Determine the optical density (OD value) of each well at once with a micro-plate reader set to 450 nm.
- *Samples may require dilution. Please refer to Sample Preparation section.

NOTE for ASSAY:

- 1. Samples or reagents addition: Please use the freshly prepared Standard. Please carefully add samples to wells and mix gently to avoid foaming. Do not touch the well wall as possible. For each step in the procedure, total dispensing time for addition of reagents or samples to the assay plate should not exceed 10 minutes. This will ensure equal elapsed time for each pipetting step, without interruption. Duplication of all standards and specimens, although not required, is recommended. To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
- Incubation: To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.
 Do not allow wells to sit uncovered for extended periods between incubation steps. Once reagents have been added to the well strips, DO NOT let the strips DRY at any time during the assay. Incubation time and temperature must be observed.
- 3. **Washing:** The wash procedure is critical. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Solution by aspirating or decanting and remove any drop of water and fingerprint on the bottom of the plate. Insufficient washing will result in poor precision and falsely elevated absorbance reading. When using an automated plate washer, adding a 2 minutes soak period following the addition of wash buffer, and/or rotating the plate 180 degrees between wash steps may improve assay precision.
- 4. **Controlling of reaction time:** Observe the change of color after adding TMB Substrate (e.g. observation once every 10 minutes), TMB Substrate should change from colorless or light blue to gradations of blue. If the color is too deep, add Stop Solution in advance to avoid excessively strong reaction which will result in inaccurate absorbance reading.
- 5. **TMB Substrate** is easily contaminated. TMB Substrate should remain colorless or light blue until added to the plate. Please protect it from light.
- 6. **Stop Solution should be added to the plate in the same order as the TMB Substrate.** The color developed in the wells will turn from blue to yellow upon addition of the Stop Solution. Wells that are green in color indicate that the Stop Solution has not mixed thoroughly with the TMB Substrate.

CALCULATION of RESULTS


Average the duplicate readings for each standard and sample and subtract the average optical density of Blank. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. Average the duplicate readings for each standard and samples, then subtract the average zero standard optical density. Plot a four-parameter logistic curve on log-log graph paper, with standard concentration on the x-axis and OD values on the y-axis.

If the samples have been diluted, the concentration calculated from the standard curve must be multiplied by the dilution factor. If the OD of the sample surpasses the upper limit of the standard curve, you should re-test it with an appropriate dilution. The actual concentration is the calculated concentration multiplied by the dilution factor.

TYPICAL DATA

As the OD values of the standard curve may vary according to the conditions of the actual assay performance (e.g. operator, pipetting technique, washing technique or temperature effects), the operator should establish a standard curve for each test. Typical standard curve and data is provided below for reference only.

Concentration(pg/mL)	500	250	125	62.5	31.25	15.63	7.81	0
OD	2.475	1.624	0.995	0.523	0.251	0.172	0.121	0.068
Corrected OD	2.407	1.556	0.927	0.455	0.183	0.104	0.053	

Human IL-6 concentration(pg/mL)

PRECISION

Intra-assay Precision (Precision within an assay): 3 samples with low, mid range and high level Human IL-6 were tested 20 times on one plate, respectively.

Inter-assay Precision (Precision between assays): 3 samples with low, mid range and high level Human IL-6 were tested on 3 different plates, 20 replicates in each plate.

	Intra-assay Precision			Inter-assay Precision		
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
Mean (pg/mL)	25.30	67.60	210.10	240.20	66.50	197.40
Standard deviation	1.70	2.80	7.80	1.60	3.40	6.70
CV (%)	9.72	4.14	3.71	6.61	5.11	3.39

RECOVERY

The recovery of Human IL-6 spiked at three different levels in samples throughout the range of the assay was evaluated in various matrices.

Sample Type	Range (%)	Average Recovery (%)
Serum (n=5)	97-110	102
EDTA plasma (n=5)	92-108	99
Cell culture media (n=5)	95-109	101

LINEARITY

Samples were spiked with high concentrations of Human IL-6 and diluted with Reference Standard & Sample Diluent to produce samples with values within the range of the assay.

		Serum (n=5)	EDTA plasma (n=5)	Cell culture media (n=5)
1:2	Range (%)	100-111	89-103	88-101
	Average (%)	105	97	93
1:4	Range (%)	97-108	83-96	94-109
	Average (%)	102	90	100
1:8	Range (%)	94-109	83-97	95-110
	Average (%)	101	89	102
1:16	Range (%)	99-112	84-96	93-105
	Average (%)	106	88	99

TROUBLESHOOTING

Problem	Causes	Solutions
Poor standard curve	Inaccurate pipetting	Check pipettes.
	Improper standard dilution	Ensure briefly spin the vial of standard
		and dissolve the powder thoroughly by
		gentle mixing.
	Wells are not completely aspirated	Completely aspirate wells in between steps.
Low signal	Insufficient incubation time	Ensure sufficient incubation time.
	Incorrect assay temperature	Use recommended incubation temperature.
		Bring substrate to room temperature
		before use.
	Inadequate reagent volumes	Check pipettes and ensure correct
	Improper dilution	preparation.
	HRP conjugate inactive or TMB failure	Mix HRP conjugate and TMB, rapid
		coloring.
Deep color but low	Plate reader setting is not optimal	Verify the wavelength and filter setting
value		on the Microplate reader.
		Open the Microplate Reader ahead to
		pre-heat.
Large CV	Inaccurate pipetting	Check pipettes.
High background	Concentration of target protein is too	Use recommended dilution factor.
	high	
	Plate is insufficiently washed	Review the manual for proper wash. If using
		a plate washer, check that all ports are
		unobstructed.
	Contaminated wash buffer	Prepare fresh wash buffer.
Low sensitivity	Improper storage of the ELISA kit	All the reagents should be stored according
		to the instructions.
	Stop solution is not added	Stop solution should be added to each well
		before measurement.

SUMMARY

- 1. Add 100 µL standard or sample to each well. Incubate for 90 min at 37°C.
- 2. Remove the liquid. Add 100 µL Biotinylated Detection Ab. Incubate for 1 hour at 37°C.
- 3. Aspirate and wash 3 times.
- 4. Add 100 μL HRP Conjugate. Incubate for 30 min at 37°C.
- 5. Aspirate and wash 5 times.
- 6. Add 90 µL Substrate Reagent. Incubate for 15 min at 37°C.
- 7. Add 50 μ L Stop Solution. Read at 450 nm immediately.
- 8. Calculation of results.

DECLARATION

- 1. Limited by current conditions and scientific technology, we can't conduct comprehensive identification and analysis on all the raw material provided. So there might be some qualitative and technical risks for users using the kit.
- 2. The final experimental results will be closely related to the validity of products, operational skills of the operators and the experimental environments. Please make sure that sufficient samples are available.
- 3. To get the best results, please only use the reagents supplied by the manufacturer and strictly comply with the instructions!
- 4. Incorrect results may occur because of incorrect operations during the reagents preparation and loading, as well as incorrect parameter settings of the Micro-plate reader. Please read the instructions carefully and adjust the instrument prior to the experiment.
- 5. Even the same operator might get different results in two separate experiments. In order to get reproducible results, the operation of every step in the assay should be controlled.
- 6. Every kit has strictly passed QC test. However, results from end users might be inconsistent with our data due to some variables such as transportation conditions, different lab equipments, and so on. Intra-assay variance among kits from different batches might arise from the above reasons, too.

