Technical support: order@acebiolab.com

Phone: 886-3-2870051

Ver.1 Date: 20180222

DNase I, RNase-Free

Cat# ER1001 - 1000 U

Storage at -20 °C and avoid from frequent temperature changes

INTRODUCTION

DNase I is an endonuclease that degrades both double-stranded and single-stranded DNA, producing 3'-OH oligonucleotides. DNase I is suited for applications such as nick translation, production of random fragments, cleavage of genomic DNA for footprinting, removal of DNA template after *in vitro* transcription, and removal of DNA from RNA samples prior to applications such as RT-PCR. Moreover, RNase-Free DNase I may be used in applications where maintaining the integrity of the RNA is critical. In the presence of Mg²⁺, DNase I attacks each strand of DNA independently, and the sites of cleavage are distributed in a statistically random fashion. In the presence of Mn²⁺, DNase I cleaves both strands of DNA at approximately the same site to yield fragments with blunt ends or protruding termini of one or two nucleotides in length.

CONTENTS

No	Component	ER1001 – 1000U
DA	DNase I, RNase-free (Lyophilized)	1 vial
DB	1X Storage Buffer ^a	1.2 ml
DC	10X Reaction Buffer ^b	1 ml
DD	8X Stop Solution ^c	1 ml

- a. 1X Storage Buffer: 10 mM HEPES (pH 7.5), 50% glycerol (v/v), 10 mM CaC₂l and 10 mM MgCl₂.
- b. 10× Reaction Buffer: 400 mM Tris-HCl (pH 8.0), 100 mM MgSO₄ and 10 mM CaCl₂.
- c. 8X Stop Solution: 20 mM EDTA (pH 8.0).

INFORMATION

Inhibitors: EGTA; EDTA; salt concentrations >100mM will reduce DNase activity.

Molecular Weight: 31,000 Daltons. Requirement: Ca²⁺ and Mg²⁺ or Mn²⁺.

Source: Bovine pancreas.

UNIT DEFINITION

One unit of RNase-Free DNase is defined as the amount required to completely degrade 1 μg of lambda DNA in 10 minutes at 37 °C in 50 μ l of a buffer containing 40mM Tris-HCl (pH 7.9), 10mM NaCl, 6mM MgCl₂ and 10mM CaCl₂. Under these assay conditions one unit of DNase activity is approximately equal to one Kunitz unit.

QUALITY CONTROL

RNase Assay: 50ng of [3 H]RNA is incubated with 5 units of RNase-Free DNase I in Transcription Optimized 1x Buffer for 1 hour at 37 $^{\circ}$ C, and the release of radiolabeled nucleotides is monitored by scintillation counting of TCA-soluble material. The minimum passing specification is <3% release.

PROTOCOL

Note: This DNase solution does not contain an RNase inhibitor. Observe caution in handling the product to ensure against contaminating it with RNase.

1. Preparation

Resuspend DNase I in 1 ml Storage Buffer and aliquot into appropriated volume, store at -20 $^{\circ}$ C .

2. Removal of genomic DNA from RNA

Mix the component in RNase-free tube			
DNase I, RNase-free	(1 U/1 μl)	1 μΙ	
10X Reaction Buffer		5 μΙ	
RNA		Optional	
RNase-free ddH₂O		To 50 μl	

- **3.** Mix thoroughly and incubate at 37° C for 10 mins.
- **4.** Add Stop solution to a final 2.5 mM.
- **5.** Heat inactivate at 65° C for 10 mins.

PRODUCT USE LIMITATION

These products are intended for research use only.

