2X ACE LAmp Master Mix
 Cat\# EP1407-1ml|EP1408-5*1 ml | EP1409-15*1 ml
 Storage: All components should be stored at $-20^{\circ} \mathrm{C}$.

INTRODUCTION

$2 \times$ ACE LAmp Master Mix is a blend of Taq DNA Polymerase and a DNA proofreading polymerase with 3^{\prime} to 5' exonuclease activity. Its fidelity was 6-fold higher than conventional Taq DNA Polymerase. Used with the optimized buffer system, $2 \times$ ACE LAmp Master Mix is applicable to long PCR products, up to 21 kb . This Master Mix is also able to amplify long fragments accurately from templates of different sources or different length.
$2 \times$ ACE LAmp Master Mix contains Vazyme LAmp DNA Polymerase, dNTP, and optimized buffer. The reaction can be started by adding only primers and template, which simplifies the operation, improves through-put, and enhances result reproducibility. The protective agents included guarantees the stability of the activity of this Master Mix. The PCR product, containing dA at 3'-end, can be cloned into T-vector, and is suitable for One Step Express cloning kit.

CONTENTS

Component	EP1407	EP1408	EP1409
$2 X$ ACE LAmp Master Mix	1 ml	$5 * 1 \mathrm{ml}$	$15^{*} 1 \mathrm{ml}$

PROTOCOL

1. General reaction mixture for PCR:

ddH2O	to $50 \mu \mathrm{l}$
$2 \times$ ACE LAmp Master Mix	$25 \mu \mathrm{l}$
Template DNA*	Optional
Primer $1(10 \mu \mathrm{M})$	$2 \mu \mathrm{l}$
Primer $2(10 \mu \mathrm{M})$	$2 \mu \mathrm{l}$

*The recommended amount of DNA template for a $50 \mu \mathrm{l}$ reaction system is as follows:

Human Genomic DNA	$10-200 \mathrm{ng}$
Bacterial Genomic DNA	$1-100 \mathrm{ng}$
λ DNA	$0.1-10 \mathrm{ng}$
Plasmid DNA	$0.1-10 \mathrm{ng}$

2. Thermocycling conditions:
\(\left.\left.$$
\begin{array}{ll}\hline 94^{\circ} \mathrm{C} & 5 \mathrm{~min} \text { (Pre-denaturation) } \\
94^{\circ} \mathrm{C} & 30 \mathrm{sec} \\
55^{\circ} \mathrm{C} * \\
72^{\circ} \mathrm{C} & 30 \mathrm{sec} \\
72^{\circ} \mathrm{C} & 30 \mathrm{sec} / \mathrm{kb} \\
7 \mathrm{~min} \text { (Final extension) }\end{array}
$$\right\} \begin{array}{l}

\hline\end{array}\right\}\)| |
| :--- |

*The optimal annealing temperature should be $1-2^{\circ} \mathrm{C}$ lower than the T_{m} of the primers used.
$\left.\begin{array}{ll}94^{\circ} \mathrm{C} & 1-3 \mathrm{~min} \text { (Pre-denaturation) } \\ 94^{\circ} \mathrm{C} \\ 68^{\circ} \mathrm{C} * \\ 68^{\circ} \mathrm{C} & 10 \mathrm{sec} \\ 30-60 \mathrm{sec} / \mathrm{kb} \\ 7 \mathrm{~min} \text { (Final extension) }\end{array}\right\} 30-35 \mathrm{cycles}$

* For amplification of a DNA fragment $>5 \mathrm{~kb}$, it is recommended to use long primers which Tm between $68^{\circ} \mathrm{C}$ and 70 ${ }^{\circ} \mathrm{C}$. The temperature for both annealing and extension should be $68^{\circ} \mathrm{C}$, which can significantly improve the amplification specificity. Extending extension time could increase the amplification yield.

PRIMERS DESIGNING NOTES

1. Choose C or G as the last base of the 3^{\prime}-end of the primer;
2. Avoid continuous mismatching at the last 8 bases of the 3^{\prime}-end of the primer;
3. Avoid hairpin structure at the 3 '-end of the primer;
4. T_{m} of the primers should be within the range of $55^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$;
5. Additional sequence should not be included when calculating Tm of the primers;
6. GC content of the primers should be within the range of $40 \%-60 \%$;
7. T_{m} and GC content of forward and reverse primes should be as similar as possible.

PRODUCT USE LIMITATION

These products are intended for research use only.

